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What are the questions?

1) What is the structure of spacetime at Planck scales

• Is spacetime discrete or continuous?

• If discrete, what are the elementary units of space or spacetime?

• What are the elementary events?

• What is the symmetry of the ground state?

• What is the spectrum of excitations?

• Is there any scaling at subplankian scales (asymptotic safety)



What are the questions?

1) What is the structure of spacetime at Planck scales

2) What is fundamental and what is emergent?

• Is space emergent or fundamental?

• Is locality emergent?  Is there a fundamental notion of locality?

• Is time emergent or fundamental?

• Is causality emergent or fundamental?

• Is the lorentz group or other local gauge symmetries emergent    
or fundamental?

• Is matter emergent?



What are the questions?

1) What is the structure of spacetime at Planck scales

2) What is fundamental and what is emergent?

3) What is the dynamics of the fundamental entities?

4) Does classical spacetime emerge?

5) What are the generic expectations for new experimentally 
accessible phenomena?

•Modified dispersion relations/broken or modified Lorentz symmetry

•Early universe cosmology

•black hole entropy and spectra



Currently active approaches to these questions:

Background dependent approaches  

 (quantize fields or extended objects on fixed classical background space-times) 

•String theory
•Asymptotic safety
•N=8 supergravity
•non-commutative geometry and field theory

Background independent approaches (no classical background spacetime):

•Derived from quantization of diffeomorphism invariant theories:

LQG and spin foam models

•Models of background independent quantum physics

causal sets
Causal dynamical triangulations
quantum graphity
matrix models
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Loop quantum gravity:  Four basic principles

Loop quantum gravity is not a single theory.  It is a method 
for quantizing diffeomorhism invariant theories of 
connections.  These include general relativity and supergravity 
in all dimensions.  

There are results from both Hamiltonian and path integral 
perspectives.



The basic physical principles

1) The Gauge principle: All forces are described by gauge fields

•Gauge fields: Aa valued in an algebra G
•Gravity: Aa valued in the lorentz group of SU(2) subgroup
•p form gauge fields 
•Supergravity: Ψµ is a component of a connection.

2) Duality: equivalence of gauge and loopy (stringy) descriptions

 observables of  gauge degrees of freedom are non-local:
 described by measuring parallel transport around loops

 Wilson loop    T[γ,A] = Tr P exp ∫γΑ            γ



2) Duality:  Quantum gauge fields can be described by the
 dynamics of their field lines.

In a superconductor the magnetic fields are
quantized and discrete.

In strong interaction physics the color electric
field lines are quantized and discrete.
 “Dual superconductor hypothesis”

In quantum gauge theories there are operators that create or
annihilate individual field lines called Wilson loops

T[γ,A] = Tr exp ∫γΑ             γ

Other operators count field flux through surfaces. 
The laws of motion of the field can be written completely in terms
of these two operators.  



The gravitational field can be described as a gauge theory:
Spacetime connection  =   Gauge field      =  configuration variable
Spacetime metric   =    Electric field   =  momentum

•Quantum gauge fields can be described in terms of operators that
correspond to Wilson loops and electric flux.  These have a natural 
algebra that can be quantized: 

The loop/flux algebra.

     T[γ,A] = Trexp ∫γΑ

 
 
 Ε[S]= ∫SΕ

[ , ]    = h G Int
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Developed on a background with fixed metric, these lead to string 
theory!



Four principles: 
1) The Gauge principle: All forces are described by gauge fields

•Gauge fields: Aa valued in an algebra G
•Gravity: Aa valued in the lorentz group of SU(2) subgroup
•p form gauge fields 
•Supergravity: Ψµ is a component of a connection.

2) Duality: equivalence of gauge and loopy (stringy) descriptions

 Observables of  gauge degrees of freedom are non-local:
 described by measuring parallel transport around loops

3) Diffeomorphism invariance and background independence



3)  Background independence  (partial)

Means that are no fixed, non-dynamical fields and no global
symmetries.   Topology, differential structure and boundary 

conditions are fixed.

⇒ gauge invariance of general relativity includes ACTIVE
 diffeomorphism invariance of the spacetime manifold.  

⇒spacetime is NOT modeled by a 
 manifold and metric, but
 by the equivalence class of manifolds and metrics, which are 

equivalent under any diffeomorphism !!  Points are only
 distinguished by values of fields.

⇒  Realizes the basic principle that space and time are not fixed 
but reflect only dynamically evolving relationships

q
p

φ



4) Locality: 



Four principles: 
1) The Gauge principle: All forces are described by gauge fields

2) Duality: equivalence of gauge and loopy (stringy) descriptions

3) Background independence and diffeomorphism invariance.

4)  Locality

 

 



Basic results



LQG depends on a basic insight into the dynamics of diffeomorphism invariant field 
theories, common to GR, supergravity etc.

For quantization we want to put the field theory into the simplest
form possible.  For ordinary QFT’s this is a low order polynomial
which can be understood as a collection of weakly coupled harmonic 
oscillators.  This can’t work for a diffeo invariant theory as there
is no anomoly free rep of the diffeo group on Fock space.  Furthermore if we try 
to represent GR as an expansion around a free field theory there are infinite order 
interactions.

Is there an alternative?

The simplest form of a non-linear theory is given by quadratic 
equations, hence by a cubic action.  This means no more complicated
operator products than quadratic in quantum field equations. 

We can write a cubic action for GR, supergravity etc, by adding
Lagrange multipliers.   This gives us one meaning of locality.   

This leads to an understanding that GR is closely related not to free field theory but 
to topological field theory.  

 



The Plebanski action

Consider a theory of an SU(2) connection AAB on a four
manifold M, with a 2-form field BAB, both valued in SU(2)

This is a topological field theory, with no local dof.
The equations of motion are:

SPleb =
1
G

∫
Bi ∧ Fi −

Λ
2

Bi ∧Bi

Fi = ΛBi

D ∧Bi = 0



The Plebanski action

Add a term, with  Φij a spin two field (symm and trace-free)

This is now an action principle for general relativity.
The equations of motion are:

SPleb =
1
G

∫
Bi ∧ Fi −

Λ
2

Bi ∧Bi +φijB
i ∧Bj

Fi = ΛBi

D ∧Bi = 0

−φijB
j

Bi ∧Bj − 1
3
δijBk ∧Bk = 0

There exists frame fields ea s.t. Bi = self-dual part of [ea ∧ eb]i



So the configuration space is a space of SU(2) 
connections on a 3-manifold 

The metric components are canonical momenta

SPleb =
1
G

∫
Bi ∧ Fi −

Λ
2

Bi ∧Bi +φijB
i ∧Bj

=
1
G

∫
dt

∫

±
Ei ∧ ∂0Ai −A0iD ∧ Ei...

{Ai
a(x), Ebcj(y)} = Gεabcδ

i
jδ

3(x, y)

Ei
bc = self-dual part[e ∧ e]ibc



So the configuration space is a space of SU(2) 
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The fundamental theorem of loop quantum gravity:

The LOST theorem:

For any compact G, there is a unique representation of the algebra 
of Wilson loops and electric fluxes in d>1 spatial dimensions which 
carries a non-anomalous representation of the spatial 
diffeomorphism group, and in which the electric field flux and 
magnetic field flux through finite surfaces are represented by finite, 
well defined operators.  

Lewandowski, Okolo, Sahlmann, Thiemann+ Fleishhack     2003



More precisely: the unique Hilbert space is defined as follows:

Def:  G-spin network is a graph Γ with  edges 
labeled by spins (representations of G)  and 
vertices labeled by invariants.

Given any Γ there is an extension of a Wilson loop, gotten by
tracing the parallel transports of the connection on the edges in the 
representations given by the labels. 

Theorem:

•The unique Hilbert space, Hkin has an orthonormal basis in 1-1 
  correspondence with the embeddings of spin nets Γ in Σ.      



Physical states must be diffeomorphism invariant.    
These must satisfy:
    ` Ψ[Γ] = Ψ[diffeo   Γ] 

Using the unitary rep of diffeo’s we can construct these exactly. 

• The diffeomorphisms of  Σ give unitary operators on Hkin :


            U  (φ) | Γ >  =  | φ−1   Γ>  
  φ   in Diff(Σ )  piecewise smooth


 
 Example: 
 
 Ψ[Γ] = K[Γ] 


 
 where K[Γ] be an invariant of knotted graphs, i.e   the Jones polynomial

 
• The space of diffeomorphism invariant states, Hdiff , has  an orthonormal basis 
 labeled by {Γ }, the diffeo classes of embeddings of all spin networks  Γ in Σ.   

 < {Γ }|Γ’ > =  1  if Γ’  is in {Γ }     0 otherwise. 

• Hdiff    is separable with piecewise smooth diffeos

• Inner product:  < {Γ }|{Γ’ } > = δ {Γ }{Γ’ } 



4) Locality:  the dynamics is generated by local moves in the graph

Genera&ng moves for
 four valent graphs

Generating moves 
for 
three valent graphs

A theory gives amplitudes to these moves which are func7ons of
the labels.  The amplitudes corresponding to the quan7za7on of
general rela7vity are known in detail.   They can be constructed
by constraining the path integral for BF theory. 



GEOMETRIC OBSERVABLES ARE FINITE AND DISCRETE 

Let the spatial manifold, Σ have a boundary, B.

Some observables can be constructed via a regularization 
procedure that respects diffeomorphism invariance.  These  
are finite and have discrete spectra:  

• Volume of Σ

• Area of the boundary of Σ

• Hamiltonian constraint

•Hence there is a smallest physical  volume and area.
•Each spinnet state can be interpreted as a discrete 
quantum geometry with quantized volumes on nodes and 
areas on edges.



In this theory states are given by networks of field lines

Geometry is measured in terms of the properties of the 
field lines.

Area through a surface = electric flux through the surface

Volume in a region ~ number of nodes in the field lines.

HENCE:  Quantum geometry is discrete because field lines
are discrete.



The basic physical picture:

•The gravita8onal field is a gauge field.

•We quan8ze it in a representa8on that realizes quan8za8on of
  electric flux.  (This has been proved to be the only possibility 
  consistent with the gauge and diffeomorphism symmetries.)

The states are graphs: networks of quan8zed electric flux.

•This implies discreteness of all areas and volumes, so the theory 
is ultraviolet finite.

•The gauge invariance includes diffeomorphism invariance. Hence 
  there is no meaning to where the graphs are in space, only
  their topology maKers.

•Dynamics is  local moves in the connec8vity of the graphs.



But what about perturba7ve non‐renormalizability?

That depends on two assump8ons:

•Space8me is smooth at arbitrarily short distances
•Lorentz invariance holds as usual at arbitrarily high energies.

Neither of these are implied by the combina8on of general 
rela8vity and quantum field theory. In fact, that combina8on 
implies the nega8on of the first, and perhaps the second!

 



Role of the cosmological constant:

Requires quantum deformation of SU(2)  

 q=e2πi/k+2  k= 6π/GΛ

To represent this the spin network graphs must be framed:



Basic dynamical results (hamiltonian theory)

• existence and finiteness of hamiltonian constraint operator after 
regularization consistent with spatial diffeo invariance.

•  consistency of quantum constraint algebra

• infinite numbers of exact solutions to all quantum constraints

•  semiclassical states for flat space and (A)deSitter spacetime.

•   excitations are massless spin 2 gravitons

• there are conserved chiral excitations which propagate and interact  
(possible matter)



Basic dynamical results: path integrals or spin foams



A spin foam can be expressed as:

•A sequence of local moves
•A causal (partially ordered) set 
(as a discrete causal structure)
•As a complex of labeled 2-surfaces

Spin foam amplitudes can be derived by:
 

•Deriving the amplitudes for a topological 
field theory and then imposing the 
constraints in the measure
•Exponentiating the hamiltonian constraint
•By expressing them as the Feynman  
diagrams of a certain matrix model
All approaches give the same general 
theory

cr



The sum over spin foams is like
a Feynman diagram computation.

•Rather than initial and final
  momentum eigenstates we have
  initial and final spin networks.

•Rather than diagrams we have
  spin foam histories.

•Rather than summing over
  momenta on edges 
 we sum over spins on faces.

Everything is one dimension up

For each spin foam model there
is a matrix model such that the
spin foams are the Feynman
diagrams of that model. 



Basic dynamical results: path integrals or spin foams

•Existence of path integrals
Closed form path integral for quantum BF theory
Quantum GR amplitudes in closed form from constraining BF 
measure.
Also obtained by discretization of formal path integral.
uv finiteness of some forms.
Expression in terms of matrix models (GFT)

•Semiclassical approximation
Dominated by Regge calculus in some limits.

•Propagator for spin 2 computed and agrees with semiclassical 
theory.



Applications:

•  Black holes and cosmological horizons

• Coupling to matter

• 2+1 gravity coupled to matter

•  Cosmology

•  Phenomenology



Results on black holes and horizons



Horizons can be treated as boundaries.   
- There is a boundary action and boundary conditions that are satisfied at horizons (isolated 
horizons.) 

-The boundary theory is a Chern-Simons theory

Boundary condition:

Denotes vanishing expansion of null geodesics: 
k ~ surface gravity for black hole, for cosmological horizon k =

6π

!GΛ

The horizon is a punctured sphere, with punctures at the ends of spin network 
edges, so we get a relation between area and the dimension of the boundary state 
space

SPleb =
∫

M
Bi ∧ Fi − ...− k

4π

∫

∂M
YCS(A)

Bi|∂M = Ei|∂M =
k

2π
F i|∂M



Results on black holes and  horizons:       
•There are exact results for boundary conditions of the form


 E (s.d. 2-form of metric) = constant F (left-handed curvature)

•This includes all black hole and cosmological horizons

•The horizon state space is described in terms of Chern-Simons theory
•It can be decomposed into eigenstates of area

•For each area the horizon state space is finite dimensional-gives the 
exact quantum geometry of the horizon.

•The Bekenstein Hawking relation holds exactly




 S (entropy) = Area / 4Gh

•The (finite) renormalization of G required is fixed independently by        

 matching to the quasi normal mode spectrum of bh’s  (Dreyer) 



Black hole singularities removed:
Modesto gr-qc/0407097, 0504043
Husain & Winkler gr-qc/0410125
Ashtekar & Bojowald    gr-qc/0504029

In models of the interior geometry, by the same mechanism as 
works in quantum cosmological models.

Corrections to Hawking radiation:
 

Ansari  hep-th/0607081

Corichi, Diaz-Polo,Fernandez-Borja
gr-qc/0609122

http://arxiv.org/find/gr-qc/1/au:+Corichi_A/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Corichi_A/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Diaz_Polo_J/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Diaz_Polo_J/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Fernandez_Borja_E/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Fernandez_Borja_E/0/1/0/all/0/1


Coupling to matter

•Most major results extend to coupling to gauge, spinor 
and scalar fields

•Most major results extend to N=1 SUGRA, some to N=2

• Unification arises by extending gauge group in Plebanski 
formalism

•Some results on chiral excitations and standard model.

SU(2)→ G ⊂ SU(2) + H



Dimensional reduction to 2+1 gravity

•quantum theory of 2+1 pure gravity a tqft, exactly solved.

•2+1 coupled to matter: symmetry of the ground state is 
quantum deformed to kappa-poincare algebra.  



Applications to cosmology

The big question: is the singularity at the big bang still there 
or was there time and a universe before the big bang?  

To study the very early universe a class of models is 
constructed by reducing to homogeneous spacetimes and 
then quantizing the reduced theory using the methods of
LQG.   These are loop quantum cosmology models (LQC).

These models can be solved exactly and the result is that 
the singularities are removed.



Basic LQC results:

•The exact evolution by the Hamiltonian constraint solved, 
numerically, in terms of effective equations and in some 
cases exactly.  

•Coupling to matter, including inflaton fields
has been incorporated exactly. 

•At large volumes (in planck units) FRW classical 
cosmology is recovered

•At small volumes the singularity is absent, and replaced by 
a bounce, before which the universe was contracting. 

•At small volume leading corrections have been studied
and understood.

  



Cosmological singularities are replaced by  bounces:

gr-qc/0312110

Gravity coupled to a massive
scalar field:



k=0 quantum cosmology
Ashtekar et al



k=1 quantum cosmology
Ashtekar et al



 Are there consequences for cosmological observations?

•Inflation is recovered by coupling to scalar field.

•Corrections to the power spectrum for inflation derived          
Hofman +Winkler astro-ph/0411124, Hossain gr-qc/04110124

  

There is an  order Lp term!!

Gives a 10% effect for quadrapole mode



astro-ph/
0311015



Phenomenology



Phenomenology

•The main question is what is the symmetry of the ground state?
•  Poincare invariance?
•  Broken Poincare invariance?
•  Deformed poincare invariance? (DSR,  the subject of tomorrow’s talk)

•Does LQG make predictions for these?
•  No definitive  or rigorous results.

•  In 2+1 gravity with matter, the answer is DSR in the form of a quantum  
deformation of Poincare symmetry called kappa-Poincare symmetry.

•  In 3+1 there are heuristic, semiclassical arguments for DSR, in the form of an 
energy dependence of the metric arising in the semiclassical approximation. 



Arguments for DSR from the semi‐classical limit of quantum gravity

•Not rigorous
•Two 

ls hep‐th/0501091, Nucl.Phys. B742 (2006) 142‐157.
ls  arXiv:0808.3765

Why should the metric become energy dependent?



Variables:

Poisson brackets:

Connec&on rep:         

φ maKer fields



Variables:

Poisson brackets:

Connec&on rep:

Semiclassical states:

classical solu&on:

 S(A) is a &me coordinate on configura&on space and on solu&ons
  S=µ T where T is a coordinate on the space&me  

So an energy eigenstate          

S:  Hamilton‐Jacobi 
func8on



Semiclassical states:

Decompose E operator around a solu&on aai‐ fluctua8ons of metric,
we ignore them.
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a 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a 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Energy 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Semiclassical states:

Decompose E operator around a solu&on:

PuKng everything together

So the space&me metric has become energy dependent

And there is a modified dispersion rela&on to leading order:



Second argument for DSR from the semiclassical 
limit of quantum gravity



•Semi‐classical general rela8vity, a new way.  Rather than posit:

•Use Λ = 1/L2 as an infra red regulator and get the flat space8me 
behavior by taking the limit as Λ  0, scaling operators by 
appropriate powers of (L/lP).

•Study the reac8on of the conformal mode to quantum energy density

•Promote the conformal mode to an operator on the QFT Hilbert space
  defined by solving the Hamiltonian constraint with no gravitons

Hence, in a state |φ> the expecta8on value of the metric is 



Now, put the maKer in a one par8cle energy Eigenstate:

Since the state is a momentum eigenstate

Hence, we have an effec8ve metric operator whose expecta8on value is

Now take Λ  0 and renormalize

With n=1 we have 

 



Thus, we have derived an energy dependence to the metric,

ie the spa8al metric is
  
This implies a modified energy momentum rela8on

And an energy dependent speed of light

Note, this is DSR and not Lorentz breaking because we have
implemented the Hamiltonian constraint that says that there is no
preferred slicing of space8me.



Current active directions to look out for:

Spin foam models:

•Low energy limit of spin foam models
•N point functions
•Renormalization group
•Matrix models (Group field theory)
•Deformed symmetry

Cosmology

•Modified gravity models from extended Plebanski (Krasnov)
•Odd parity effects in the early universe (Immirzi parameter)
•models of dark energy 
•inhomogeneities by extending LQC, CMB etc. 
•unimodular gravity (cosmological constant problem and issue of time)

Unification

•extended Plebanski
•topological excitations



Conclusions:

General relativity is a gauge theory, closely related to topological field theory (same for 
Sugrav)

Loop quantum gravity provides a rigorously defined method for quantization of 
diffeomorphism invariant gauge field theories including these.

For GR in 3+1:  

Existence and uniqueness theorems for quantum kinematics, hilbert space,  etc.

Discretness of area, volume etc. rigorously shown.  

Rigorous solutions to all quantum constraints 

Closed form expressions for path integrals

Some results on propagators N point functions, 

Some results on semiclassical limit

Models: well tested on 2+1 gravity, cosmological models etc.

Matter can be added by extending G but could also be emergent.





Current priorities:     

The path integral:

•Show that the dominant histories are triangulations of smooth spacetimes
•Show that the classical Einstein equations emerge
•Study the 3,4 and higher point functions.

•Renormalization group
•Extend to unifications with matter

The ground state:

•Construct a quantum hamiltonian and show it is positive
•Construct the ground state beyond the semiclassical approximation
•Study the symmetries of the ground state and its excitations:

Is Lorentz invariance broken or deformed?
Do the chiral excitations represent massless fermions?

Phenomenology:

•Incorporate inhomogeneities in quantum cosmological models
make predictions of corrections to CMB spectra

•Parity breaking effects in the early universe (TB mixing)
•Mechanisms for dark energy

current progress:  fast,  moderate,   slow 
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Unitarity, information loss and all that?

The standard scenario 
(Hawking...) There seems to be a paradox.

Where can the information go?

But quantum gravity effects are
shown to eliminate the singularity

Modesto gr-qc/0407097, 0504043
Husain & Winkler gr-qc/0410125
Ashtekar & Varadarajan 
Ashtekar & Bojowald    gr-qc/0504029

X

What then??



Unitarity, information loss and all that?

The standard scenario 
(Hawking...) 

Quantum singularity resolution:
(assuming no permanent baby universe 
and  finite evaporation time)

Unitarity restored!

Quantum region



i+

i0

i-

I-

I+

I+

What if the black hole doesn’t evaporate in finite time?

We get a permanent “baby universe” 

But no problem with
basic principles.

Information is
conserved,
so long as all of
I+  is taken into
account. 

Quantum region

i+


